0%

韩信点兵原理

韩信点兵原理

描述

相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排、五人一排、七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了。输入3个非负整数a,b,c ,表示每种队形排尾的人数(a<3,b<5,c<7),输出总人数的最小值(或报告无解)。已知总人数不小于10,不超过100 。

输入

输入3个非负整数a,b,c ,表示每种队形排尾的人数(a<3,b<5,c<7)。例如,输入:2 4 5

输出

输出总人数的最小值(或报告无解,即输出Noanswer)。实例,输出:89

样例输入

2 1 6

样例输出

41

定理1 如a被n除所得的余数等于b被n除所得的余数,c被n除所得的余数等于d被n除所得的余数, 则ac被n除所得的余数等于b d被n除所得的余数。

用同余式叙述就是:

如a≡b(mod n ),c≡d(mod n )

则ac≡b d(mod n )

定理2 被除数a加上或减去除数b的倍数,再除以b,余数r不变。即

如a ≡ r(mod b ),则a ± b n≡r(mod b )

例如70≡1(mod 3 )可得70±10×3≡1(mod 3 )

韩信点兵法口诀的原理

①能被5,7除尽数是35k,其中k=2,即70除3正好余1,70a 除3正好余a。

②能被3,7除尽数是21k,其中k=1,即21除5正好余1,21b 除5正好余b。

③能被3,5除尽数是15k,其中k=1,即15除7正好余1,15c 除7正好余c。

这样——

根据①可知 70a+21b+15c 除3正好余a。

根据②可知 70a+21b+15c 除5正好余b。

根据③可知 70a+21b+15c 除7正好余c。

这样我们就得到了一个答案

除 3 余 a 除 5 余 b 除 7 余 c 的一个答案是 70a+21b+15c

而这个数(70a+21b+15c)对(357)取余就得到了最小答案

(70a+21b+15c)%(357)为最小值,然后再判断最小值是否满足条件。

转载自:https://www.cnblogs.com/zqxLonely/p/4054526.html

坚持技术分享,您的支持将鼓励我继续创作!

欢迎关注我的其它发布渠道